Genomic approach to PET imaging of prostate cancer: from mouse to man.

Thakur ML1,2, Tripathi S1, Gomella L3, Trabulsi EJ3

Departments of Radiology1, Kimmel Cancer Center2, and Urology3 at Thomas Jefferson University, Philadelphia, USA

The need is compelling for early and accurate diagnosis of prostate cancer (PC), non-invasively. The goal is to PET image PC using 64Cu-TP3805, specific for VPAC1 receptors, expressed in high density on PC cells, but not on normal cells.

64Cu-TP3805 has (i) high affinity for VPAC1 (Kd = 3.1x10^{-9}M), (ii) excellent stability in-vivo, and (iii) ability to image spontaneously grown PC in transgenic (TRAMP) mice that mimic pathophysiology of human PC.

Patients (n=25) scheduled for radical prostatectomy, who signed consent form, were PET imaged preoperatively. The images were compared to pathologic analysis of whole mount, excised prostate. Deparaffinized whole mount pathology slides (n=68) from 6 VPAC1 PET imaged patients, 3 benign prostatic hyperplasia (BPH) patients (n=9), one malignant lymph node (LN, n=3), and one benign LN (n=3) were incubated with Cu-64-TP3805, washed, and subjected to digital autoradiography (DAR). Slides were then H&E stained, read microscopically and marked as PC, benign, cyst, or prostatic intraepithelial neoplasia (PIN), and compared with DAR images.

DAR identified 105/107 (98%) histologically known PC foci, 9 previously unknown PC foci, 18 high grade prostatic intraepithelial neoplasia (HIGPIN), 2/2 ejaculatory duct, and 5/5 urethra verumontanum, but missed 2/107 (1.8%) PC foci due to artifact. DAR was positive for positive LN and negative for benign LN, for three BPH patients, and for 5/5 cysts.

Detection of HIGPIN was consistent with early expression of VPAC1. With excellent PPV (98%) and NPV(100%), Cu-64-TP3805 is worthy of imaging PC.

Support: NIH R01 CA157372-03 and NuView, Inc. (MLT).