Corporate Presentation
March, 2013
Forward Looking Statements

This slide presentation contains forward-looking statements. Such statements are valid only as of today, and we disclaim any obligation to update this information. These statements are subject to known and unknown risks and uncertainties that may cause actual future experience and results to differ materially from the statements made. These statements are based on our current beliefs and expectations as to such future outcomes. Drug discovery and development involve a high degree of risk. Factors that might cause such a material difference include, among others, uncertainties related to the ability to attract and retain partners for our technologies, the identification of lead compounds, the successful preclinical development thereof, the completion of clinical trials, the FDA review process and other government regulation, our pharmaceutical collaborators’ ability to successfully develop and commercialize drug candidates, competition from other pharmaceutical companies, product pricing and third-party reimbursement.
Investor Highlights

• Strong and diverse pipeline in molecular imaging and diagnostics
 • First-in-class, best-in-class potential
 • Large market opportunities
 • Straightforward path to commercialization

• Strong IP position with exclusive rights to all products in development
 • Prostate and Breast Cancer Imaging Diagnostic
 • Cancer Cell Proliferation Imaging Diagnostic
 • Cardiovascular Disease Imaging Diagnostic
 • Prostate and Bladder In Vitro Diagnostic Urine Screen

• Commercial integration strategy
 • Addresses current problems in industry
 • Integrated molecular imaging development, radiopharmaceutical manufacturing and distribution organization
 • Provides near-term access to existing $1.7B radiopharmaceutical marketplace
NuView Board of Directors and Advisors

Directors

Paul J. Crowe, Chairman and CEO
- Philips Medical Systems, Diasonics NMR, Mobile PET Systems

Thomas McCausland
- Westinghouse Electric Corporation, Siemens, Radiological Society of North America, the American College of Radiology and several other healthcare companies

Peter S. Conti, M.D., Ph.D., FACR, FACNP
- Professor of Radiology, Pharmacy, and Biomedical Engineering at the University of Southern California and Director Positron Imaging Science Center and Clinic, currently serves on the Board of Directors and is a past-president of the Society of Nuclear Medicine (SNM), board-certified in Diagnostic Radiology and Nuclear Medicine

Stuart Foster
- Edwards Life Sciences, Baxter International, Intramed Laboratories, Beckman Instruments

Stanley J. Pappelbaum, MD, MBA
- ScrippsHealth, pediatric cardiology at the University of California, San Diego and San Diego Children’s Hospital, National Healthcare Consultancy

Advisors

Mathew Thakur, M.D., Ph.D
- Professor of Radiology and Director of the Laboratories of Radiopharmaceutical Research and Molecular Imaging at Thomas Jefferson University Hospital, past president of International Society of Radiolabeled Blood Elements, Indo-American Society of Nuclear Medicine, Society of Nuclear Medicine and Molecular Imaging Center of Excellence, currently serves on the Board of Directors for SNM and Chairs several of its committees

George Q. Mills, M.D
- Former Division Director of Medical Imaging and Hematology Products in the Office of Oncology Drug Products, part of FDA Center for Drug Evaluation and Research (CDER), as Division Director at the FDA, responsible for review and approval of diagnostic and radio-labeled therapeutic drugs and biologics, Branch Chief and designated Acting Deputy Division Director of the Biologics Oncology Division at the Center for Biologics Evaluation and Research (CBER) and CDER, CBER/CDER expert in conjunction with the review of radiographic imaging submissions in support of licensure submissions

William G. Bradley, Jr., M.D., Ph.D., FACR
- Professor and serves as Chairman of the Department of Radiology at the University of California, San Diego, past-president of International Society of Magnetic Resonance in Medicine, Board of Trustees for the Radiological Society of North America, Chairman of its Fund Development Committee, Board of Chancellors for the American College of Radiology
Industry Problems

• Shortage of FDA approved medical isotopes for diagnostic imaging and therapy procedures utilized in everyday clinical practice

• Small number of radioisotope manufactures in the US
 • Significant barriers to entry
 • Problematic foreign supply chain for the largest selling product Molybdenum-99/Technitium-99
 • Regulations to shift from high energy uranium (HEU) to low energy uranium (LEU) production methods

• Federally mandated healthcare reforms require improved diagnostic/therapeutic technologies and value for money
NuView Solutions

- Integrated radiopharmaceutical manufacturing and distribution organization
 - Address current supply problems in the marketplace
 - Fast transfer from plant to patient
 - Capture significant market share from an existing $1.7B marketplace
- Efficient and cost-effective avenue for manufacture and distribution of NuView products in development
- Effectively participate in growth of targeted healthcare diagnostics
NuView Integration Strategy

Control all levels of development, manufacturing and distribution
The NuView Solution

• 95%-owned subsidiary of NuView
• Reopening manufacturing facility in Denton, Texas
 – Off-line for 2 years, FDA cGMP recognized manufacturing facility
 – LEU process for Tc-99 production
 – Fully licensed to manufacture all medical imaging biomarkers
 – One of only four companies in US to manufacture/distribute medical-grade isotopes into an existing $1.7B marketplace
• Exclusive Mo-99 distribution territory for the Americas
 – Starting material for technetium-99m
 – The most widely used isotope in nuclear medicine
• Supply/distribution agreement w/ 2nd largest US distributor for USR products
 – Negotiations with the largest US distributor
 – Combined distribution represents 85% of the total market
Linear Accelerator - Main Manufacturing Facility

- Located in Denton, TX - 22.5 acres, 5.5 acres developed
- Building 1 houses electronic engineering labs, machine shop, and LEU Tc-99 production line
- Building 2 houses executive offices, cGMP compliant manufacturing labs and LINAC control systems
- LINAC located in below-grade 300’ tunnel to the south of the facility
- Approximately 90,000 sq. ft. in total, with over 20,000 sq. ft. dedicated to manufacturing
Cyclotron Manufacturing and Research Facility

- Located in Denton, Texas
- 2 acres, approximately 13,000 sq. ft. of manufacturing space
- Houses cGMP manufacturing space, one 42 MeV cyclotron and one CS30 cyclotron
Existing Isotope Production Equipment

- 32.8 MeV 6 Target Station Linear Accelerator

- 42 MeV Cyclotron with 2 target stations, 30 MeV Cyclotron (not pictured) also available
Sterile Processing

- cGMP sterile processing capability with clean room areas classified from ISO 8 to ISO 5

- Full preparatory facilities available for sterilization of process equipment

- Currently used to manufacture pharmaceutical TI-201 and sterile In-111
Quality Control

- Full QC and Microbiology services
- ICP-OES, UV-Vis, HPLC, GCMS, pH/titration, TLC
- HPGe Gamma spectrometry, Gross radiation detection
- LAL Testing, microbiological environmental testing (excluding molds and fungus)
- Health physics detection and assessment of facilities and processes
- Overall quality system driven by company Master Validation Plan, supported by regular internal company and external vendor audits
Control all levels of development, manufacturing and distribution
The NuView Solution

• Wholly owed subsidiary of NuView

• Acquire select number of strategic radiopharmacies
 – Enhance distribution
 – Purchase products manufactured by USR
 – Provide immediate revenue and EBITDA

• Focus on established rural pharmacies with well-defended territories
NuView Integration Strategy

Control all levels of development, manufacturing and distribution
The NuView Solution

• Develop and in-license new generation of molecular imaging and *in vitro* diagnostics
 – Fulfill unmet medical needs
 – Provide more efficient and cost-effective solutions for healthcare industry

• Expertly navigate clinical and regulatory development to commercialize its diverse product pipeline

• Intellectual Property protection to maximize product value
Diverse Pipeline

Oncology

NLS - VPAC1
- Breast Cancer
- Prostate Cancer

NLS - FMAU
- Breast Cancer
- Therapy Response
- Lung Cancer
- Therapy Response

Cardiovascular

NLS - FXA-18
- Cardiac

Biomarker Discovery
Analytical Validation
Clinical Validation
Launch

In Vitro Diagnostics

NLS - VPAC1
- Prostate and Bladder
- Urine Screen
<table>
<thead>
<tr>
<th>NLS/ VPAC1</th>
</tr>
</thead>
</table>
| **Lead Candidate:** | $[^{64}\text{Cu}]\text{VPAC1}$
Potential best-in-class molecular imaging agent
Exclusive commercialization rights |
| **Unique attributes:** | Tumor-specific molecular biomarker
Expressed at initiation of oncogenesis
Distinguish malignant lesions from benign masses |
| **Opportunity:** | Replace invasive biopsy procedure and FDG-PET
Breast and Prostate Tumor Diagnosis
1.6M breast, 1M prostate biopsies performed annually |
| **Pre-clinical data:** | Specificity confirmed in spontaneous breast and prostate cancer mouse models
Detected primary tumor and metastases
Did NOT detect lesions shown by histology to be non-malignant |
| **Status:** | Completed Phase 1 in Breast Cancer Patients
Investigator-led study at Thomas Jefferson University
Study accepted for publication in Journal of Nuclear Medicine |
| **Next steps:** | Phase 1 Prostate Cancer initiating in 2013
Phase 2 Breast Cancer initiating in 2013 |
VPAC1 Biomarker Target Validation

- VPAC1 receptors are over-expressed in high density on surface of breast, prostate, bladder and other cancer cells.¹

- High density VPAC1 expression occurs very early in oncogenic transformation, well before cell morphology alterations for histologic confirmation.

- VPAC1 receptors encode a G protein involved in cell proliferation, cell differentiation, as well as, in survival of cancer cells.

- On stroma, normal cells, and benign masses, few VPAC1 receptors are expressed.

NLS-VPAC1 ($[^{64}\text{Cu}]-\text{TP3805}$)

Radionuclide Tracer

- ^{64}Cu selected over ^{18}F for PET imaging
- Well studied chemistry
- ^{64}Cu radiolabeling much simpler than ^{18}F
- Higher yields and longer half life (12.4 vs 9.1 hours)
- Radiolabeling efficiencies averaged $>97\%$

VIP/PACAP Analogs

- Standard FMOC chemistry
- Extensive investigation of IC50, K_d, blood clearance, \textit{in vivo} stability and tumor uptake
- No elevation of cAMP or any significant changes in blood chemistry, electrolytes, creatinine, enzymes, or body weight
In Vivo Breast Cancer Imaging

NLS-VPAC1 vs PET

• Model resembles the pathophysiology of human Breast Cancer

• Spontaneously grown Breast Cancer (visible 5, invisible 1 and metastatic 2) lesions in transgenic MMTVneu mice
 – 100% PET signal by $[^{64}\text{Cu}]$-TP3805
 – Only 50% PET signal by $[^{18}\text{F}]$-FDG
 – No PET signal by $[^{64}\text{Cu}]$-TP3805 in benign lesions
 – Prominent PET signal by $[^{18}\text{F}]$-FDG in benign lesions

• All malignant lesions confirmed by histology and expressed VPAC1 receptors

• All benign lesions confirmed by histology and expressed very low levels of VPAC1 receptors

(A–C) Coronal PET slices of MMTVneu mouse. (D) Surface-rendered CT/64Cu-TP3805 PET image. (E–G) Axial slices through dotted yellow line. (H) Tumor histology. Spontaneously grown, unpalpable, and invisible tumor in intact MMTV mouse was unequivocally detectable by 64Cu-TP3805 (B, yellow arrow) but not by 18F-FDG (A). Fusion and surface-rendered 64Cu-TP3805 images (C and D) depict that it was lung metastatic lesion. RT-PCR demonstrated VPAC1 oncogene product expression, and histology (H) showed malignant status of tumor (Rs in leftmost panels indicate right of mouse).

(A–C) Coronal PET slices of MMTVneu mouse. (D) Surface-rendered CT/64Cu-TP3805 PET image. MMTV mouse had large visible mass in left eye. There was intense 18F-FDG uptake in lesion (A, yellow arrow) (R represents animal’s right; lower red spot is 18F-FDG uptake in bladder). There was no 64Cu-TP3805 uptake in lesion (B–D) except in liver and spleen (B and C). RT-PCR showed no overexpression of VPAC1. Histology (lower right, H) showed lesion was benign cystadenoma of ductal origin. (E–G) Axial slices through dotted yellow line.
NLS-VPAC1 Phase 1 Breast Cancer Feasibility Study

- NLS-VPAC1 unequivocally imaged all (100%) malignant lesions, irrespective of their hormonal status (n=20, 113–5323 mm³)
 - 15 invasive ductal carcinoma, three lobular carcinoma, one high-grade mammary carcinoma, and one invasive papilloma
 - 13 ER+, 8 PR+, 5 PR2-, 2 HER2+, 7 HER2-, and for 4 HER2 status was indeterminate*
- NLS-VPAC1 detected all (100%) sentinel lymph nodes (n=4, 28–402 mm³)
- Standardized uptake value SUV (max) values ranged from 1.9 to 7 for PET images
- PEM uptake value to background uptake value (PUV/BUV) ratios (max) ranged from 2.7 to 11.9
- NLS-VPAC1 tumor uptake was rapid (max. at 15 min post injection)
 - No significant changes through 5 hrs post injection

* ER= estrogen receptor, PR=progesterone receptor, HER2=human epidermal growth factor receptor 2
NLS-VPAC1 Clinical Development

• $2.6MM NIH grant awarded to conduct an investigator-led, Phase 1 clinical study of NLS-VPAC1 in Prostate Cancer at TJU
 – Planned to initiate in 4Q 2013

• Phase 1 feasibility study of NLS-VPAC1 in 20 Breast Cancer Patients complete
 – Results have been accepted for publication in The Journal of Nuclear Medicine

• NuView-sponsored Breast Cancer trial planned to initiate in 3Q 2013
NLS-VPAC1 Market Opportunity
Breast Cancer

• 1.6 Million breast biopsies in US in 2011
• 1.3 Million of these biopsies resulted in a benign diagnosis
• Digital mammography, MRI, CT, US, F-18-FDG and Tc-99m sestamibi have limited specificity resulting in many false positive and false negative examinations
• Total costs of breast biopsy procedure average $5500, leaving a heavy financial burden on both the patient and the healthcare system
• Breast biopsies create significant patient morbidity and potentially unnecessary health care costs
NLS-VPAC1 Market Opportunity
Breast Cancer

• NLS-VPAC1 is a cancer specific, molecular imaging biomarker designed to replace costly and inconclusive invasive biopsy procedures

• NLS-VPAC1 will provide immediate visual evidence of malignant Breast Cancer tumors at the earliest stages of disease

• NLS-VPAC1 provides beneficial pharmacoeconomics for healthcare payors and patients
NLS-VPAC1 Market Opportunity
Prostate Cancer

• Most common form of cancer and the 2nd leading cause of cancer death in men over the age of 50
 – More than 33,000 men in the United States died from prostate cancer and more than 240,000 new cases identified in 2011

• Low cancer predictive ability of Digital rectal examination (DRE) and PSA tests, over-inflating the number of referrals for invasive biopsy

• ~1 Million prostate biopsy procedures performed annually in the US
 – Only ~25% actually detect the presence of cancer
 – Repeat prostate biopsies are positive in 25-30% of patients with initial negative biopsy

• Invasive biopsy procedures are painful and increase patient morbidity
 – Men who receive prostate cancer biopsies have > 2X more hospital admissions for complications than those who don’t get the procedure

• Total costs of prostate biopsy procedure can exceed $5000, leaving a heavy financial burden on both the patient and the healthcare system
NLS-VPAC1 Market Opportunity
Prostate Cancer

• NLS-VPAC1 is a cancer-specific, molecular imaging biomarker to replace the costly and inconclusive invasive prostate biopsy procedures

• NLS-VPAC1 will provide immediate visual evidence of malignant Prostate Cancer tumors at the earliest stages of disease

• NLS-VPAC1 provides beneficial pharmacoeconomics for healthcare payors and patients
<table>
<thead>
<tr>
<th>NLS-FMAU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Candidate:</td>
</tr>
<tr>
<td>$[^{18}F]$FMAU (1-(2'-deoxy-2'-fluoro-beta-d-arabinofuranosyl)thymine)</td>
</tr>
<tr>
<td>Potential best-in-class molecular imaging agent</td>
</tr>
<tr>
<td>Exclusive commercialization rights</td>
</tr>
<tr>
<td>Unique attributes:</td>
</tr>
<tr>
<td>Cell proliferation molecular biomarker</td>
</tr>
<tr>
<td>Quantitative assessment of chemotherapeutic response in tumors</td>
</tr>
<tr>
<td>Opportunity:</td>
</tr>
<tr>
<td>Redefine how and when the effectiveness of cancer therapies is measured</td>
</tr>
<tr>
<td>Initial indications- Breast Cancer and Non-Small Cell Lung Cancer</td>
</tr>
<tr>
<td>Large Patient Populations</td>
</tr>
<tr>
<td>Pre-clinical data:</td>
</tr>
<tr>
<td>Erlotinib treatment response in EGFR-dependent and independent mouse tumor models</td>
</tr>
<tr>
<td>Reduced $[^{18}F]$FMAU PET signal in Erlotinib-sensitive tumors after 2 days</td>
</tr>
<tr>
<td>Reduced $[^{18}F]$FMAU PET signal correlated with tumor shrinkage</td>
</tr>
<tr>
<td>No reduction in $[^{18}F]$FDG PET signal</td>
</tr>
<tr>
<td>Status:</td>
</tr>
<tr>
<td>Completed Phase 1 Study</td>
</tr>
<tr>
<td>Investigator-led study at University of Southern California (USC)</td>
</tr>
<tr>
<td>$[^{11}C]$FMAU in 28 patients achieved feasibility to image a variety of cancer tumors</td>
</tr>
<tr>
<td>Next steps:</td>
</tr>
<tr>
<td>Phase 1 Breast Cancer study initiating in 3Q 2013</td>
</tr>
</tbody>
</table>
NLS-FMAU Target Validation

- $[^{11}\text{C}]$ thymidine (TdR) PET imaging of cell proliferation in tumors has been extensively investigated.
- Rapid catabolism of TdR in vivo greatly complicates interpretation of PET data.
- NLS-FMAU is a non-catabolized analogue of TdR that incorporates into DNA and is trapped in cells after phosphorylation.
- NLS-FMAU has excellent potential for in vivo DNA synthesis imaging.
- Systematic comparison of $[^{18}\text{F}]$FMAU and $[^{18}\text{F}]$FDG PET for treatment response of the EGFR inhibitor Erlotinib in EGFR-dependent and independent mouse tumor models.
- Erlotinib-sensitive tumors displayed reproducible decrease in $[^{18}\text{F}]$FMAU PET signal after two- and four-day treatment.
- No consistent reduction $[^{18}\text{F}]$FDG PET imaging after chemotherapy.

$[^{18}\text{F}]$FMAU PET assessment of erlotinib treatment response in non-small cell lung cancer. a) Representative decay-corrected whole-body coronal microPET images of mice bearing HCC827 (Left) and A549 (Right) tumor, at 2 h after intravenous injection of $[^{18}\text{F}]$FMAU (7.4 MBq/mouse) (Top) and at 45 min after intravenous injection of $[^{18}\text{F}]$FDG (7.4 MBq/mouse) (Bottom), before the treatment and on Day 2 and 4 after daily erlotinib treatment (oral gavage, 50 mg/kg). b) Quantitative analysis of changes in $[^{18}\text{F}]$FMAU and $[^{18}\text{F}]$FDG uptake ratios on Day 2 and 4 after daily erlotinib treatment vs. vehicle control group.
NLS-FMAU
1-(2'-deoxy-2'-fluoro-beta-d-arabinofuranosyl) thymine

Radionuclide Tracer

• 11C used initially
• Short half life of 11C (20.4 minutes) limits its broad application in PET centers
• Successful conversion to 18F radiolabeling with patented, automated one-pot synthesis
• Radiochemical purity was >99% and high specific activity is suitable for clinical studies

Figure 5. One-pot synthesis of 18F-FMAU.
NLS-FMAU Clinical Development

- $[^{11}C]FMAU$ vs $[^{18}F]FDG$ investigated in 10 patients with confirmed malignancies (3 brain, 2 lung, 2 sarcoma, 1 colon, 1 breast, 1 esophageal)
 - NLS-FMAU visualized 2 tumors (esophageal, brain) not seen with FDG.
 - Due to low brain uptake in the background, FMAU had 3x better contrast than FDG for brain tumors
- Phase 1 Breast Cancer trial with $[^{18}F]FMAU$ at USC to be completed in 2013
Tumor Cell Proliferation

- 1.6 million new cancer cases diagnosed in 2012
- ~12 million Americans with a history of cancer alive in 2012
- Escalating cancer drug prices a large concern in healthcare industry
 - Some therapies cost over $35,000 per month
- New generation of personalized therapies are highly effective only in a subset of the patients being administered the drug
NLS-FMAU Market Opportunity
Tumor Cell Proliferation

• NLS-FMAU a molecular imaging biomarker to monitor the effectiveness of cancer therapies hours or days after treatment has been administered

• The ability to monitor in ‘real-time’ the effectiveness of a specific therapy on a specific individual would change the way cancer is treated
 – Patient benefit of decreased time on costly/toxic therapies that are ineffective
 – Increase patient compliance with ‘real time’ visual assurance that course of therapy is effective
 – Healthcare payor benefit to decrease the number of cycles of costly therapies that ineffective for a specific patient

• Potential for NLS-FMAU PET signal reduction as a surrogate endpoint in clinical trials
 – Drastic reduction in clinical development time
| **Lead Candidate:** | [18F]-FXA adenosine analog
Potential best-in-class in cardiac imaging
Exclusive commercialization rights |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique attributes:</td>
<td>Adenosine analog molecular biomarker</td>
</tr>
<tr>
<td>Opportunity:</td>
<td>Novel biomarker for Cardiovascular Disease</td>
</tr>
</tbody>
</table>
| **Pre-clinical data:** | Small animal and non-human primate studies display good substrate for imaging the heart
Further studies necessary to understand the mechanism of cardiac uptake |
| **Status:** | Investigator-led, preclinical research at USC |
| **Next steps:** | Initiate IND-enabling studies in 2013 |
In Vitro Diagnostic (IVD)
NLS/ VPAC1 Urine Screen

Lead Candidate: VPAC1 immunohistochemistry diagnostic
Potential best-in-class IVD for early detection of prostate/bladder cancer
Exclusive commercialization rights

Unique attributes: Tumor-specific molecular biomarker
Detection of minute quantities of cancer cells shed into urinary tract
Biomarker expressed at earliest stages of oncogenesis

Opportunity: Replace PSA and digital rectal examination
Cancer specific detection earlier and more reliably than current methods
Recommended annual prostate cancer screening in men over 40

Validation data: Urine samples from (1) healthy patients, (2) prostate or bladder cancer patients and (3) benign prostate hyperplasia patients
Detected shed cancer cells in 100% of cancer patients
No shed cancer cells detected in healthy or BPH patients

Status: Initiating expanded urine screening
Investigator-led research at TJU

Next steps: Achieve clinical validation
Optimize sample preparation and assays for commercialization
Investor Highlights

- Strong and diverse pipeline in molecular imaging and diagnostics
 - First-in-class, best-in-class potential
 - Large market opportunities
 - Straightforward path to commercialization
- Strong IP position with exclusive rights to all products in development
 - Prostate and Breast Cancer Imaging Diagnostic
 - Cancer Cell Proliferation Imaging Diagnostic
 - Cardiovascular Disease Imaging Diagnostic
 - Prostate and Bladder *In Vitro* Diagnostic Urine Screen
- Commercial integration strategy
 - Addresses current problems in industry
 - Integrated molecular imaging development, radiopharmaceutical manufacturing and distribution organization
 - Provides near-term access to existing $1.7B radiopharmaceutical marketplace
A detailed business plan is available for NuView, USR and USP. Please Contact:

Paul Crowe
CEO
NuView Life Sciences, Inc.
1107 Snowberry Street
Park City, UT 84098
T 435-647-9758
F 435-647-5602
pcrowe@nuviewinfo.com